Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2019 | public
Journal Article

Three-dimensional architected materials and structures: Design, fabrication, and mechanical behavior

Abstract

The integration of materials and architectural features at multiple length scales into structural mechanics has shifted the paradigm of structural design toward optimally engineered structures, which resulted in, for example, the Eiffel Tower. This structural revolution paved the way for the development of computational design approaches used in modern-day construction. Similar principles are now being applied to the design and manufacture of architected materials with a suite of properties determined a priori and attained through multiscale approaches. These new material classes potentially offer breakthrough advances in almost every branch of technology: from ultra-lightweight and damage-tolerant structural materials to safe and efficient energy storage, biomedical devices, biochemical, and micromechanical sensors and actuators, nanophotonic devices, and textiles. When reduced to the microscale, such materials embody the characteristics of both the constituent material, which brings the effects of its microstructure and ensuing properties at the relevant characteristic length scales, as well as the structure, which is driven by architected design. This issue gives an overview of the current state of the art of this new class of materials.

Additional Information

© 2019 Materials Research Society. Published online by Cambridge University Press: 10 October 2019.

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023