Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2020 | Published
Journal Article Open

Proton radiation effects on carrier transport in diamond radiation detectors

Abstract

Diamond, a highly radiation-resistant material, is considered a nearly ideal material for radiation detection, particularly in high-energy physics. In this study, radiation damage from high-energy proton beams was induced in diamond crystals to determine exposure lifetime in detectors made from this material; the effects were investigated using non-destructive x-ray techniques and through the FLUKA simulation package. Two diamond detectors were irradiated by an 800 MeV proton beam at different fluence rates, and the real-time current response was recorded to observe degradation in the signal over time. It was determined that the proton fluence rate had a significant effect on the device degradation. The detector performance from the irradiated detectors was characterized using x-ray beam-induced current measurements, and the mechanism of proton radiation damage to diamond sensors, especially the radiation effects on carrier transport, was studied. The vacancies generated from proton irradiation were considered the major source of detector degradation by trapping holes and inducing an internal electric field. Simulation results from the FLUKA package revealed an uneven distribution of the radiation-induced vacancies along the beam path, and the corresponding detector signals calculated from the simulation results displayed a good match to the experimental results.

Additional Information

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Submitted: 7 October 2019; Accepted: 12 January 2020; Published Online: 3 February 2020. The authors would like to thank all the CFN cleanroom staff for support of device fabrication and Donald Pinelli for his help with design suggestions, assembly, and wire-bonding. We appreciate the assistance of synchrotron beamline staff Klaus Attenkofer at ISS (NSLS-II), and Ron Nelson and Zhehui Wang from Los Alamos National Laboratory for supporting the proton irradiation experiment at LANSCE. The authors would also like to acknowledge the support from U.S. Department of Energy for Higher Energy Physics under Grant No. DESCOO15841. This research used resources [17-BM, 8-ID] of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. The Case Center for Synchrotron Biosciences was supported by the National Institute of Biomedical Imaging and Bioengineering under Grant No. P30-EB-009998.

Attached Files

Published - 1.5130768.pdf

Files

1.5130768.pdf
Files (4.0 MB)
Name Size Download all
md5:4a5fc35cf0a0d6e6420f2d16ee5e1337
4.0 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023