Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 10, 2020 | Submitted + Published
Journal Article Open

Constraints on Cosmological Parameters from the 500 deg² SPTPOL Lensing Power Spectrum

Abstract

We present cosmological constraints based on the cosmic microwave background (CMB) lensing potential power spectrum measurement from the recent 500 deg² SPTPOL survey, the most precise CMB lensing measurement from the ground to date. We fit a flat ΛCDM model to the reconstructed lensing power spectrum alone and in addition with other data sets: baryon acoustic oscillations (BAO), as well as primary CMB spectra from Planck and SPTPOL. The cosmological constraints based on SPTPOL and Planck lensing band powers are in good agreement when analyzed alone and in combination with Planck full-sky primary CMB data. With weak priors on the baryon density and other parameters, the SPTPOL CMB lensing data alone provide a 4% constraint on σ₈Ω^(0.25)_m = 0.593 ± 0.025. Jointly fitting with BAO data, we find σ₈ = 0.779±0.023, Ω_m = 0.368^(+0.032)_(−0.037), and H₀ = 72.0^(+2.1)_(−2.5)kms⁻¹ Mpc⁻¹, up to 2σ away from the central values preferred by Planck lensing + BAO. However, we recover good agreement between SPTPOL and Planck when restricting the analysis to similar scales. We also consider single-parameter extensions to the flat ΛCDM model. The SPTPOL lensing spectrum constrains the spatial curvature to be Ω_K = −0.0007±0.0025 and the sum of the neutrino masses to be ∑m_ν < 0.23 eV at 95% C.L. (with Planck primary CMB and BAO data), in good agreement with the Planck lensing results. With the differences in the signal-to-noise ratio of the lensing modes and the angular scales covered in the lensing spectra, this analysis represents an important independent check on the full-sky Planck lensing measurement.

Additional Information

© 2020 The American Astronomical Society. Received 2019 October 16; revised 2019 December 5; accepted 2019 December 8; published 2020 January 16. S.P.T. is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation grant GBMF 947. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The Melbourne group acknowledges support from the University of Melbourne and an Australian Research Council's Future Fellowship (FT150100074). Work at Argonne National Lab is supported by UChicago Argonne LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under contract No. DE-AC02-06CH11357. We also acknowledge support from the Argonne Center for Nanoscale Materials.

Attached Files

Published - Bianchini_2020_ApJ_888_119.pdf

Submitted - 1910.07157.pdf

Files

1910.07157.pdf
Files (5.0 MB)
Name Size Download all
md5:c620e5256edcd2cf0808ef69f75bcc34
3.9 MB Preview Download
md5:5ef67b0cd663a9cc7552bb80973a31c6
1.1 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023