Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 11, 2020 | Submitted
Report Open

Non-interactive zero-knowledge arguments for QMA, with preprocessing

Abstract

A non-interactive zero-knowledge (NIZK) proof system for a language L∈NP allows a prover (who is provided with an instance x∈L, and a witness w for x) to compute a classical certificate π for the claim that x∈L such that π has the following properties: 1) π can be verified efficiently, and 2) π does not reveal any information about w, besides the fact that it exists (i.e. that x∈L). NIZK proof systems have recently been shown to exist for all languages in NP in the common reference string (CRS) model and under the learning with errors (LWE) assumption. We initiate the study of NIZK arguments for languages in QMA. Our first main result is the following: if LWE is hard for quantum computers, then any language in QMA has an NIZK argument with preprocessing. The preprocessing in our argument system consists of (i) the generation of a CRS and (ii) a single (instance-independent) quantum message from verifier to prover. The instance-dependent phase of our argument system involves only a single classical message from prover to verifier. Importantly, verification in our protocol is entirely classical, and the verifier needs not have quantum memory; its only quantum actions are in the preprocessing phase. Our second contribution is to extend the notion of a classical proof of knowledge to the quantum setting. We introduce the notions of arguments and proofs of quantum knowledge (AoQK/PoQK), and we show that our non-interactive argument system satisfies the definition of an AoQK. In particular, we explicitly construct an extractor which can recover a quantum witness from any prover who is successful in our protocol. We also show that any language in QMA has an (interactive) proof of quantum knowledge.

Attached Files

Submitted - 1911.07546.pdf

Files

1911.07546.pdf
Files (2.4 MB)
Name Size Download all
md5:747ac05a16cef7f0b162186b3241f174
2.4 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023