Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 9, 2020 | Submitted
Report Open

Implicit competitive regularization in GANs

Abstract

Generative adversarial networks (GANs) are capable of producing high quality samples, but they suffer from numerous issues such as instability and mode collapse during training. To combat this, we propose to model the generator and discriminator as agents acting under local information, uncertainty, and awareness of their opponent. By doing so we achieve stable convergence, even when the underlying game has no Nash equilibria. We call this mechanism implicit competitive regularization (ICR) and show that it is present in the recently proposed competitive gradient descent (CGD). When comparing CGD to Adam using a variety of loss functions and regularizers on CIFAR10, CGD shows a much more consistent performance, which we attribute to ICR. In our experiments, we achieve the highest inception score when using the WGAN loss (without gradient penalty or weight clipping) together with CGD. This can be interpreted as minimizing a form of integral probability metric based on ICR.

Additional Information

A. Anandkumar is supported in part by Bren endowed chair, DARPA PAIHR00111890035, Raytheon, and Microsoft, Google and Adobe faculty fellowships. F. Schäfer gratefully acknowledges support by the Air Force Office of Scientific Research under award number FA9550-18-1-0271 (Games for Computation and Learning). H. Zheng is supported by Zhiyuan College, Shanghai Jiao Tong University.

Attached Files

Submitted - 1910.05852.pdf

Files

1910.05852.pdf
Files (868.6 kB)
Name Size Download all
md5:9b125b5cad758e96687e4b1995c14632
868.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023