Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 10, 2019 | Submitted + Published
Journal Article Open

The Sloan Digital Sky Survey Reverberation Mapping Project: Initial C IV Lag Results from Four Years of Data

Abstract

We present reverberation-mapping (RM) lags and black hole mass measurements using the C iv λ1549 broad emission line from a sample of 348 quasars monitored as a part of the Sloan Digital Sky Survey RM Project. Our data span four years of spectroscopic and photometric monitoring for a total baseline of 1300 days, allowing us to measure lags up to ~750 days in the observed frame (this corresponds to a rest-frame lag of ~300 days in a quasar at z = 1.5 and ~190 days at z = 3). We report significant time delays between the continuum and the C iv λ1549 emission line in 48 quasars, with an estimated false-positive detection rate of 10%. Our analysis of marginal lag measurements indicates that there are on the order of ~100 additional lags that should be recoverable by adding more years of data from the program. We use our measurements to calculate black hole masses and fit an updated C iv radius–luminosity relationship. Our results significantly increase the sample of quasars with C iv RM results, with the quasars spanning two orders of magnitude in luminosity toward the high-luminosity end of the C iv radius–luminosity relation. In addition, these quasars are located at some of the highest redshifts (z ≈ 1.4–2.8) of quasars with black hole masses measured with RM. This work constitutes the first large sample of C iv RM measurements in more than a dozen quasars, demonstrating the utility of multiobject RM campaigns.

Additional Information

© 2019 The American Astronomical Society. Received 2019 May 30; revised 2019 September 24; accepted 2019 October 10; published 2019 December 9. C.J.G., W.N.B., J.R.T., and D.P.S. acknowledge support from NSF grant AST-1517113. Y.S. acknowledges support from an Alfred P. Sloan Research Fellowship and NSF grant AST-1715579. K.H. acknowledges support from STFC grant ST/M001296/1. W.N.B. acknowledges support from NSF grant AST-1516784. P.B.H. acknowledges support from NSERC grant 2017-05983. This work is based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherché Scientifique of France, and the University of Hawaii. The authors recognize the cultural importance of the summit of Maunakea to a broad cross section of the Native Hawaiian community. The astronomical community is most fortunate to have the opportunity to conduct observations from this mountain. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. We thank the Bok and CFHT Canadian, Chinese, and French TACs for their support. This research uses data obtained through the Telescope Access Program (TAP), which is funded by the National Astronomical Observatories, Chinese Academy of Sciences, and the Special Fund for Astronomy from the Ministry of Finance in China.

Attached Files

Published - Grier_2019_ApJ_887_38.pdf

Submitted - 1904.03199.pdf

Files

1904.03199.pdf
Files (10.4 MB)
Name Size Download all
md5:3456ef2932d1963b9995e87f9393c5b7
5.7 MB Preview Download
md5:168c8da9c2c7bd0d759ef5451bf10ebe
4.7 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023