Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 26, 2019 | Submitted
Report Open

Precision Analysis of Evolved Stars

Abstract

Evolved stars dominate galactic spectra, enrich the galactic medium, expand to change their planetary systems, eject winds of a complex nature, produce spectacular nebulae and illuminate them, and transfer material between binary companions. While doing this, they fill the HR diagram with diagnostic loops that write the story of late stellar evolution. Evolved stars sometimes release unfathomable amounts of energy in neutrinos, light, kinetic flow, and gravitational waves. During these late-life times, stars evolve complexly, with expansion, convection, mixing, pulsation, mass loss. Some processes have virtually no spatial symmetries, and are poorly addressed with low-resolution measurements and analysis. Even a "simple" question as how to model mass loss resists solution. However, new methods offer increasingly diagnostic tools. Astrometry reveals populations and groupings. Pulsations/oscillations support study of stellar interiors. Optical/radio interferometry enable 2-3d imagery of atmospheres and shells. Bright stars with rich molecular spectra and velocity fields are a ripe opportunity for imaging with high spatial and spectral resolution, giving insight into the physics and modeling of later stellar evolution.

Attached Files

Submitted - 1903.05109.pdf

Files

1903.05109.pdf
Files (1.9 MB)
Name Size Download all
md5:17c673e66889c4df205f8063adec7aa8
1.9 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024