Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2014 | public
Book Section - Chapter

Human-inspired walking via unified PD and impedance control

Abstract

This paper describes a torque control scheme unifying feedback PD control and feed-forward impedance control to realize human-inspired walking on a novel planar footed bipedal robot: AMBER2. It starts with high fidelity modeling of the robot including nonlinear dynamics, motor model, and impact dynamics. Human data is then used by an optimization algorithm to produce a human-like gait that can be implemented on the robot. To realize the bipedal walking, first a PD controller is utilized to track the optimized trajectory. Next, impedance control parameters are estimated from the experimental data. Finally, the unified PD, impedance torque control law is experimentally realized on the bipedal robot AMBER2. Through the evidence of sustainable and unsupported walking on AMBER2 showing high consistency with the simulated gait, the feasibility of AMBER2 walking scheme will be verified.

Additional Information

© 2014 IEEE. This research is supported by NSF awards CPS-1239085, CNS-1136104 and CNS-0953823.

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023