Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 18, 2019 | Submitted
Report Open

Pseudorandom generators and the BQP vs. PH problem

Abstract

It is a longstanding open problem to devise an oracle relative to which BQP does not lie in the Polynomial-Time Hierarchy (PH). We advance a natural conjecture about the capacity of the Nisan-Wigderson pseudorandom generator [NW94] to fool ACâ‚€, with MAJORITY as its hard function. Our conjecture is essentially that the loss due to the hybrid argument (which is a component of the standard proof from [NW94]) can be avoided in this setting. This is a question that has been asked previously in the pseudorandomness literature [BSW03]. We then make three main contributions: (1) We show that our conjecture implies the existence of an oracle relative to which BQP is not in the PH. This entails giving an explicit construction of unitary matrices, realizable by small quantum circuits, whose row-supports are "nearly-disjoint." (2) We give a simple framework (generalizing the setting of Aaronson [A10]) in which any efficiently quantumly computable unitary gives rise to a distribution that can be distinguished from the uniform distribution by an efficient quantum algorithm. When applied to the unitaries we construct, this framework yields a problem that can be solved quantumly, and which forms the basis for the desired oracle. (3) We prove that Aaronson's "GLN conjecture" [A10] implies our conjecture; our conjecture is thus formally easier to prove. The GLN conjecture was recently proved false for depth greater than 2 [A10a], but it remains open for depth 2. If true, the depth-2 version of either conjecture would imply an oracle relative to which BQP is not in AM, which is itself an outstanding open problem. Taken together, our results have the following interesting interpretation: they give an instantiation of the Nisan-Wigderson generator that can be broken by quantum computers, but not by the relevant modes of classical computation, if our conjecture is true.

Additional Information

We thank Scott Aaronson, Yi-Kai Liu, and Emanuele Viola for helpful discussions.

Attached Files

Submitted - 1007.0305.pdf

Files

1007.0305.pdf
Files (206.8 kB)
Name Size Download all
md5:f2b0ab72fc668fe4ed96388f6de0544f
206.8 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023