Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 13, 2006 | Published
Book Section - Chapter Open

Investigation of new material combinations for hard x-ray telescope designs

Abstract

The materials chosen for depth graded multilayer designs for hard x-ray telescopes (10 keV to 80 keV) have until now been focusing on W/Si, W/SiC, Pt/C, and Pt/SiC. These material combinations have been chosen because of good stability over time and low interface roughness, However both W and Pt have absorption edges in the interesting energy range from 70 - 80 keV. If looking at the optical constants Cu and Ni would be good alternative high-Z candidates since the k-absorption edges in Cu and Ni is below 10 keV. We have investigated both of these materials as the reflecting layer in combination with SiC as the spacer layer and give the performance in terms of roughness, minimum obtainable d-spacing and stability over time as deposited in our planar magnetron sputtering facility. Likewise we review the same properties of WC/SiC coatings which we have previously developed and which allow for very small d-spacings. The combination of WC/SiC or the well established W/SiC with the above mentioned Cu and Ni-containing multilayers in the same stack allows for novel telescope designs operating up to and above 100 keV without the absorption edge structure.

Additional Information

© 2006 Society of Photo-Optical Instrumentation Engineers (SPIE).

Attached Files

Published - 626612.pdf

Files

626612.pdf
Files (749.6 kB)
Name Size Download all
md5:d33c7b841fdb2a6250f2630df47851be
749.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024