Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2019 | Supplemental Material + Published
Journal Article Open

Recovery of retinal oxygenation after MEMS implant activation

Abstract

Purpose: Retinal ischemia due to diabetic retinopathy or retinal vascular occlusions is the leading cause of blindness worldwide. Although, the underlying pathophysiology from each condition is different, the common end results are: inner retinal hypoxia and ischemia. Changes associated with retinal hypoxia include the simultaneous activation of different pathways including inflammatory, aerobic and anaerobic metabolic response. Supplementing intravitreal oxygen has been demonstrated as a novel option in preliminary reports. Our implantable MEMS oxygenator drivesoxygen from the sub-conjunctival space to the proximity of the inner retina. The main objective of this study is to determine the efficacy of the oxygenation therapy in an ischemic animal model. Methods: Nine eyes from six pigmented rabbits were included, split evenly between either healthy, implant-treated or non-treated groups. Retinal vein occlusion (RVO) was created in all animals from treated and non-treated groups 3 days prior to surgical implantation and activation of the oxygenator. Continuous measurements of pO2 levels were performed next to the diffuser and retinal vessels using an oxygen probe controlled by a micromanipulator and monitored under indirect ophthalmoscopy. Eyes were then enucleated and the retina was peeled off and cryogenically preserved in liquid nitrogen for subsequent analysis of protein expression. Results: RVO was confirmed in all animals immediately after the procedure and remained occluded over the experiment. Oxygenator devices were successfully implanted without complications. In the treated group, oxygen levels increased progressively after a couple of minutes of activation and remained over 15 mmHg and 100 mmHg respectively (Figure 1A). For the non-treated group, pO₂ levels did not increase at the retina or nearby the device (below 5mmHg). Changes among protein expression and ratio (upregulation on NFkB and PDH; down-regulation of HIF1a, NFkB/IKKa ratio and P-PDH/PDH ratio) were observed in the treated group (Figure 1B-C). Conclusions: The MEMS oxygenator device can be safely implanted into the eye. This study supports the feasibility of intravitreal oxygen delivery for treatment of ischemic retinal diseases through inflammatory response modulation. Future experiments will evaluate long-term efficacy.

Additional Information

© 2019 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

Attached Files

Published - Martinez_2019p3344.pdf

Supplemental Material - Figure.ppt

Files

Martinez_2019p3344.pdf
Files (566.4 kB)
Name Size Download all
md5:2f86876c2cdc164600893a9ab9fa1f86
456.7 kB Download
md5:b0273749b359f57da56952ce6290656e
109.7 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023