The electron canonical battery effect in magnetic reconnection: Completion of the electron canonical vorticity framework
- Creators
-
Yoon, Young Dae
-
Bellan, Paul M.
Abstract
A widespread practice in studying magnetic reconnection is to examine the electron momentum equation. Here, we present an alternative, ab initio framework that examines the motion of the electron canonical vorticity, which is the curl of the electron canonical momentum. The competition between just two terms—the convective term and the electron canonical battery term—determines the dynamics of electron canonical vorticity and equivalently the electron physics down to first principles. To demonstrate the power of this approach, the growth, saturation, stability, and morphology of the electron diffusion region are explained within the electron canonical vorticity framework. The framework provides a clear distinction between reconnection models where the frozen-in property of the magnetic field is violated by electron inertia and by pressure tensor effects such as electron viscosity.
Additional Information
© 2019 Published under license by AIP Publishing. Submitted: 30 July 2019; Accepted: 12 September 2019; Published Online: 8 October 2019. This material is based upon work supported by the NSF/DOE Partnership in Plasma Science and Engineering via U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences award DE-FG02-04ER54755, by the Air Force Office of Scientific Research under award No. FA9550-17-1-0023, and by the NSF Division of Atmospheric and Geospace Sciences under Award No. 1914599. The computations presented here were conducted on the Caltech High Performance Cluster, partially supported by a grant from the Gordon and Betty Moore Foundation.Attached Files
Published - 1.5122225.pdf
Supplemental Material - canbatcalculation.pdf
Files
Name | Size | Download all |
---|---|---|
md5:27e3b1441d2138c7e448d993849d84e6
|
6.1 MB | Preview Download |
md5:e94143fff2c2dae4676018fa07f4614c
|
2.3 MB | Preview Download |
Additional details
- Eprint ID
- 99160
- Resolver ID
- CaltechAUTHORS:20191008-140918538
- Department of Energy (DOE)
- DE-FG02-04ER54755
- Air Force Office of Scientific Research (AFOSR)
- FA9550-17-1-0023
- NSF
- AGS-1914599
- Gordon and Betty Moore Foundation
- Created
-
2019-10-08Created from EPrint's datestamp field
- Updated
-
2021-11-16Created from EPrint's last_modified field