Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 1, 2019 | Published
Journal Article Open

The control of gene expression and cell identity by H3K9 trimethylation

Abstract

Histone 3 lysine 9 trimethylation (H3K9me3) is a conserved histone modification that is best known for its role in constitutive heterochromatin formation and the repression of repetitive DNA elements. More recently, it has become evident that H3K9me3 is also deposited at certain loci in a tissue-specific manner and plays important roles in regulating cell identity. Notably, H3K9me3 can repress genes encoding silencing factors, pointing to a fundamental principle of repressive chromatin auto-regulation. Interestingly, recent studies have shown that H3K9me3 deposition requires protein SUMOylation in different contexts, suggesting that the SUMO pathway functions as an important module in gene silencing and heterochromatin formation. In this Review, we discuss the role of H3K9me3 in gene regulation in various systems and the molecular mechanisms that guide the silencing machinery to target loci.

Additional Information

© 2019. Published by The Company of Biologists Ltd. Published online September 20, 2019. We thank the three reviewers for the insightful comments and suggestions that helped us to improve this article. The role of H3K9me3 in various aspects of gene regulation is a broad topic and we apologize to colleagues whose relevant work was not discussed due to space limitations. The authors' research is supported by grants from the National Institutes of Health (R01 GM097363 to A.A.A. and R01 GM110217 to K.F.T.) and Minobrnauka of the Russian Federation (14.W03.31.0007), and by David and Lucile Packard Foundation Awards to A.A.A. Deposited in PMC for release after 12 months. The authors declare no competing or financial interests.

Attached Files

Published - dev181180.full.pdf

Files

dev181180.full.pdf
Files (1.0 MB)
Name Size Download all
md5:890429baffacae10b8ad777344da84d3
1.0 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023