Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 17, 2019 | Supplemental Material
Journal Article Open

Anomalies in Supercooled Water at ~230 K Arise from a 1D Polymer to 2D Network Topological Transformation

Abstract

Puzzling anomalous properties of water are drastically enhanced in the supercooled region. However, the nature of these anomalies is not known. We report here molecular dynamics simulations using the RexPoN force field from 298 to 200 K along the 1 atm density curve. At 298 K, there are 2.1 strong hydrogen bonds (SHBs), leading to a dynamic branched one-dimensional (1D) polymer. Water remains 1D down to 240 K, but at and below 230 K, the number of SHBs becomes 3.0, leading to a two-dimensional (2D) network that persists to 200 K. We propose that this 1D-to-2D topological transition accounts for the anomalous properties of supercooled water. Near 230 K, the power spectra show dramatic increases in the angular vibrational frequency modes, while the diffusivity decreases dramatically, both arising from the 1D-to-2D transformation. This transition is not first order because free energy changes uniformly but fluctuations in the entropy near 230 K suggest a possible second-order transition.

Additional Information

© 2019 American Chemical Society. Received: August 20, 2019; Accepted: September 27, 2019; Published: September 27, 2019. We thank the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993 for supporting S.N. and the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC00014607 for supporting W.A.G. The calculations were carried out on the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1548562. Author Contributions: S.N. and W.A.G. designed the research; S.N. performed the research; S.N. and W.A.G. analyzed the data; and S.N. and W.A.G. wrote the paper. The authors declare no competing financial interest.

Attached Files

Supplemental Material - jz9b02443_si_001.pdf

Files

jz9b02443_si_001.pdf
Files (6.1 MB)
Name Size Download all
md5:a4cc20a4c5bac8d8748520e63eae62b0
6.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023