Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 20, 2019 | Submitted + Published
Journal Article Open

The Sloan Digital Sky Survey Reverberation Mapping Project: Improving Lag Detection with an Extended Multiyear Baseline

Abstract

We investigate the effects of extended multiyear light curves (9 yr photometry and 5 yr spectroscopy) on the detection of time lags between the continuum variability and broad-line response of quasars at z ≳ 1.5, and compare with the results using 4 yr photometry+spectroscopy presented in a companion paper. We demonstrate the benefits of the extended light curves in three cases: (1) lags that are too long to be detected by the shorter-duration data but can be detected with the extended data; (2) lags that are recovered by the extended light curves but are missed in the shorter-duration data due to insufficient light-curve quality; and (3) lags for different broad-line species in the same object. These examples demonstrate the importance of long-term monitoring for reverberation mapping to detect lags for luminous quasars at high redshift, and the expected performance of the final data set from the Sloan Digital Sky Survey Reverberation Mapping project that will have 11 yr photometric and 7 yr spectroscopic baselines.

Additional Information

© 2019 The American Astronomical Society. Received 2019 July 31; revised 2019 August 22; accepted 2019 August 23; published 2019 September 19. We thank the referee for useful comments. Y.S. acknowledges support from an Alfred P. Sloan Research Fellowship and NSF grant AST-1715579. C.J.G., W.N.B., J.R.T., and D.P.S. acknowledge support from NSF grants AST-1517113 and AST-1516784. K.H. acknowledges support from STFC grant ST/R000824/1. P.B.H. acknowledges support from NSERC grant 2017-05983. L.C.H. acknowledges National Science Foundation of China (11721303) and the National Key R&D Program of China (2016YFA0400702). This work is based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. The authors recognize the cultural importance of the summit of Maunakea to a broad cross section of the Native Hawaiian community. The astronomical community is most fortunate to have the opportunity to conduct observations from this mountain. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. The PS1 has been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE). Facilities: Sloan - Sloan Digital Sky Survey Telescope, PS1 - , CFHT - , Bok. -

Attached Files

Published - Shen_2019_ApJL_883_L14.pdf

Submitted - 1908.00027.pdf

Files

1908.00027.pdf
Files (6.6 MB)
Name Size Download all
md5:15f014f8a1f9c55225cc0897327548f7
3.6 MB Preview Download
md5:cb66ad903012f585923e9bf07a8055c4
3.0 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023