Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 10, 2019 | Published
Journal Article Open

Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming

Abstract

With the trend of amplified warming in the Arctic, we examine the observed and modeled top-of-atmosphere (TOA) radiative responses to surface air-temperature changes over the Arctic by using TOA energy fluxes from NASA's CERES observations and those from twelve climate models in CMIP5. Considerable inter-model spreads in the radiative responses suggest that future Arctic warming may be determined by the compensation between the radiative imbalance and poleward energy transport (mainly via transient eddy activities). The poleward energy transport tends to prevent excessive Arctic warming: the transient eddy activities are weakened because of the reduced meridional temperature gradient under polar amplification. However, the models that predict rapid Arctic warming do not realistically simulate the compensation effect. This role of energy compensation in future Arctic warming is found only when the inter-model differences in cloud radiative effects are considered. Thus, the dynamical response can act as a buffer to prevent excessive Arctic warming against the radiative response of 0.11 W m^(−2) K^(−1) as measured from satellites, which helps the Arctic climate system retain an Arctic climate sensitivity of 4.61 K. Therefore, if quantitative analyses of the observations identify contribution of atmospheric dynamics and cloud effects to radiative imbalance, the satellite-measured radiative response will be a crucial indicator of future Arctic warming.

Additional Information

© 2019 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Received 11 January 2019; Accepted 19 August 2019; Published 10 September 2019. This work was supported by the "Development of Climate and Atmospheric Environmental Applications" project, funded by Electronics and Telecommunications Research Institute which is a subproject of the "Development of Geostationary Meteorological Satellite Ground Segment (NMSC-2019-01)" program funded by the National Meteorological Satellite Center of the Korea Meteorological Administration, and a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1A2B6006653). CY is supported by Korea Polar Research Institute by grant KOPRI-PN19081. Yuan Wang, Hui Su, and Jonathan Jiang acknowledge the support from the NASA ROSES ACMAP, MAP and CCST programs and are grateful for the support from the Jet Propulsion Laboratory, California Institute of Technology, under contract by NASA. Y.-S. Choi acknowledges the support of the JPL faculty visitation program. Author Contributions: Jiwon Hwang conducted the analyses and took the lead in writing the manuscript. Yong-Sang Choi and Changhyun Yoo developed the idea of this study. Yuan Wang, Hui Su, and Jonathan H. Jiang provided critical feedback and helped shape the research. All authors discussed the results and contributed to the final manuscript. The authors declare no competing interests.

Attached Files

Published - s41598-019-49218-6.pdf

Files

s41598-019-49218-6.pdf
Files (2.2 MB)
Name Size Download all
md5:de9f907a51d5a0520b1a46f6e6e51eca
2.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023