Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2019 | Submitted
Book Section - Chapter Open

A One-Class Support Vector Machine Calibration Method for Time Series Change Point Detection

Abstract

Identifying the change point of a system's health status is important. Indeed, a change point usually signifies an incipient fault under development. The One-Class Support Vector Machine (OC-SVM) is a popular machine learning model for anomaly detection that could be used for identifying change points; however, it is sometimes difficult to obtain a good OC-SVM model that can be used on sensor measurement time series to identify the change points in system health status. In this paper, we propose a novel approach for calibrating OC-SVM models. Our approach uses a heuristic search method to find a good set of input data and hyperparameters that yield a well-performing model. Our results on the C-MAPSS dataset demonstrate that OC-SVM can achieve satisfactory accuracy in detecting change point in time series with fewer training data, compared to state-of-the-art deep learning approaches. In our case study, the OC-SVM calibrated by the proposed model is shown to be useful especially in scenarios with limited amount of training data.

Additional Information

© 2019 IEEE. This work is supported in part by the National Research Foundation of Singapore through a grant to the Berkeley Education Alliance for Research in Singapore (BEARS) for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) program, and by the National Science Foundation under Grant No. 1645964.

Attached Files

Submitted - 1902.06361.pdf

Files

1902.06361.pdf
Files (7.1 MB)
Name Size Download all
md5:e159c254ffa5bb04c14868df357f199f
7.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023