Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2019 | Supplemental Material
Journal Article Open

Development of a bio‐MEMS device for electrical and mechanical conditioning and characterization of cell sheets for myocardial repair

Abstract

Here we propose a bio‐MEMS device designed to evaluate contractile force and conduction velocity of cell sheets in response to mechanical and electrical stimulation of the cell source as it grows to form a cellular sheet. Moreover, the design allows for the incorporation of patient‐specific data and cell sources. An optimized device would allow cell sheets to be cultured, characterized, and conditioned to be compatible with a specific patient's cardiac environment in vitro, before implantation. This design draws upon existing methods in the literature but makes an important advance by combining the mechanical and electrical stimulation into a single system for optimized cell sheet growth. The device has been designed to achieve cellular alignment, electrical stimulation, mechanical stimulation, conduction velocity readout, contraction force readout, and eventually cell sheet release. The platform is a set of comb electrical contacts consisting of three‐dimensional walls made of polydimethylsiloxane and coated with electrically conductive metals on the tops of the walls. Not only do the walls serve as a method for stimulating cells that are attached to the top, but their geometry is tailored such that they are flexible enough to be bent by the cells and used to measure force. The platform can be stretched via a linear actuator setup, allowing for simultaneous electrical and mechanical stimulation that can be derived from patient‐specific clinical data.

Additional Information

© 2019 Wiley Periodicals, Inc. Version of Record online: 06 August 2019; Accepted manuscript online: 18 July 2019; Manuscript accepted: 09 July 2019; Manuscript revised: 09 May 2019; Manuscript received: 26 January 2019.

Attached Files

Supplemental Material - bit27123-sup-0001-supplementary_info_calculation_for_wall_bending.docx

Files

Files (1.1 MB)

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023