Published July 10, 2018 | public
Book Section - Chapter

Simulating high dispersion coronagraphy (HDC) observations for large ground-based telescopes (Conference Presentation)

An error occurred while generating the citation.

Abstract

Spectroscopy of exoplanets can potentially detect biomarkers in habitable planets around other stars. The high dispersion coronagraphy (HDC) technique provides a pathway to search for biomarkers in planets around M dwarfs with next-generation ground-based extremely large telescopes (ELTs). The HDC consists of a coronagraph operating behind an extreme adaptive optics (AO) system, a single-mode fiber injection unit, and a high resolution spectrometer (HRS). The coronagraph spatially filters out starlight while the HRS spectrally discriminates starlight from planet light, reaching a starlight suppression level that enables biomarker detection. I will simulating ELT HDC instrument performance as a function of wavelength, spectral resolution, starlight suppression, and planet types, considering realistic noise budget that includes speckle noise, thermal and sky background and exozodical background.

Additional Information

© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE).

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024