Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2003 | public
Conference Paper

Cavitation in shock wave lithotripsy

Abstract

A case is presented for the important role of cavitation in stone comminution and tissue injury in shock wave lithotripsy (SWL). Confocal hydrophones and a coincidence algorithm were used to detect cavitation in kidney parenchyma. Elevated hydrostatic pressure dissolved cavitation nuclei and suppressed cell injury and stone comminution in vitro. A low‐insertion‐loss, thin, mylar film nearly eliminated stone erosion and crack formation only when in direct contact with the stone. This result indicates not only that cavitation is important in both cracking and erosion but also that bubbles act at the surface. Time inversion of the shock wave by use of a pressure‐release reflector reduced the calculated pressure at bubble collapse and the measured depth of bubble‐induced pits in aluminum. Correspondingly tissue injury in vivo was nearly eliminated. Cavitation was localized and intensified by the use of synchronously triggered, facing lithotripters. This dual pulse lithotripter enhanced comminution at its focus and reduced lysis in surrounding blood samples. The enhancement of comminution was lost when stones were placed in glycerol, which retarded bubble implosion. Thus, cavitation is important in comminution and injury and can be controlled to optimize efficacy and safety.

Additional Information

© 2003 Acoustical Society of America. Published Online: 08 October 2003. Work supported by NIH DK43381, DK55674, and FIRCA.

Additional details

Created:
September 15, 2023
Modified:
October 23, 2023