Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2014 | Published
Book Section - Chapter Open

Modeling intermittent wavepackets and their radiated sound in a turbulent jet

Abstract

We use data from a new, carefully validated, Large Eddy Simulation (LES) to investigate and model subsonic, turbulent, jet noise. Motivated by the observation that sound-source dynamics are dominated by instability waves (wavepackets), we examine mechanisms by which their intermittency can amplify their noise radiation. Two scenarios, both involving wavepacket evolution on time-dependent base flows, are investigated. In the first, we consider that the main effect of the changing base flow consists in different wavepacket ensembles seeing different steady mean fields, and having, accordingly, different acoustic efficiencies. In the second, the details of the base-flow time dependence also play a role in wavepacket sound production. Both short-time-averaged and slowly varying base flows are extracted from the LES data and used in conjunction with linearized wavepacket models, namely, the Parabolized Stability Equations (PSE), the One-Way Euler Equations (OWE), and the Linearized Euler Equations (LEE). All results support the hypothesized mechanism: wavepackets on time-varying base flows produce sound radiation that is enhanced by as much as 20dB in comparison to their long-time-averaged counterparts, and ensembles of wavepackets based on short-time-averaged base flows display similar amplification. This is not, however, sufficient to explain the sound levels observed in the LES and experiments. Further work is therefore necessary to incorporate two additional factors in the linear models, body forcing by turbulence and realistic inflow forcing, both of which have been identified as potentially important in producing the observed radiation efficiency.

Additional Information

© Stanford University Center for Turbulence Research.

Attached Files

Published - JordanColoniusBresEtAl2014.pdf

Files

JordanColoniusBresEtAl2014.pdf
Files (4.2 MB)
Name Size Download all
md5:37c6c5600121ea5388bee4b32f7ae31e
4.2 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023