Published April 17, 2018 | public
Conference Paper

Urinary stone erosion and fragmentation under low-intensity quasi-collimated ultrasound using gas-filled microbubbles with stone-targeting lipid shells

An error occurred while generating the citation.

Abstract

Urinary stone lithotripsy critically depends on the presence of cavitation nuclei at the stone surface. We hypothesized that introduction of stone-targeting microbubbles could increase cavitation activity at a stone surface sufficiently to allow stone erosion and fragmentation at peak negative pressures much lower than in acoustic energy-based urinary stone interventions with induced cavitation nuclei alone. Gas-filled microbubbles were produced with calcium-binding moieties incorporated into an encapsulating lipid shell. Stone surface coverage with these targeting microbubbles was found to approach an optimal (considering microbubble expansion during insonation) range of 5–15% with incubation times of three minutes or less. Using high-speed photomicroscopy, we observe bound microbubbles expanding 10- to 30-fold under insonation with quasi-collimated sources at mechanical indexes below 1.9. For observed stand-off parameters in the range of 0.2–0.6, the modeled collapse-generated shockwaves exceed 100 MPa. In swine model studies with these targeting microbubbles, stone fragmentation into passable fragments occurs with treatment times around 30 minutes, while post-treatment examination of ureters and kidneys shows no evidence of urothelium damage or renal parenchymal hemorrhage. The stone-targeting microbubbles reported on here have formed the basis for a new non-invasive urinary stone treatment which recently entered human clinical trials.

Additional Information

© 2018 Acoustical Society of America. Published Online: 17 April 2018.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023