Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2016 | Published + Accepted Version
Journal Article Open

Planck intermediate results. XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium

Abstract

The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF), we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C_ℓ^(TE)/C_ℓ^(EE) ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.

Additional Information

© 2016 ESO. Article published by EDP Sciences. Received 9 May 2015; Accepted 22 September 2015; Published online 09 February 2016. The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007−2013)/ERC grant agreement No. 267934. Some of the results in this paper have been derived using the HEALPix package.

Attached Files

Published - aa26506-15.pdf

Accepted Version - 1505.02779.pdf

Files

1505.02779.pdf
Files (7.6 MB)
Name Size Download all
md5:54db09135bedcf97c93eab2e7d4985be
3.6 MB Preview Download
md5:e846eea1c9a82b872458a500b6bae1ed
4.0 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023