Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 15, 2019 | Published + Submitted
Journal Article Open

Tracking continuous gravitational waves from a neutron star at once and twice the spin frequency with a hidden Markov model

Abstract

Searches for continuous gravitational waves from rapidly spinning neutron stars normally assume that the star rotates about one of its principal axes of moment of inertia, and hence the gravitational radiation emits only at twice the spin frequency of the star, 2f⋆. The superfluid interior of a star pinned to the crust along an axis nonaligned with any of its principal axes allows the star to emit gravitational waves at both f⋆ and 2f⋆, even without free precession, a phenomenon not clearly observed in known pulsars. The dual-harmonic emission mechanism motivates searches combining the two frequency components of a signal to improve signal-to-noise ratio. We describe an economical, semicoherent, dual-harmonic search method, combined with a maximum likelihood coherent matched filter, F-statistic, and improved from an existing hidden Markov model (HMM) tracking scheme to track two frequency components simultaneously. We validate the method and demonstrate its performance through Monte Carlo simulations. We find that for sources emitting gravitational waves at both f⋆ and 2f⋆, the rate of correctly recovering synthetic signals (i.e., detection efficiency), at a given false alarm probability, can be improved by ∼10%–70% by tracking two frequencies simultaneously compared to tracking a single component only. For sources emitting at 2f⋆ only, dual-harmonic tracking only leads to minor sensitivity loss, producing ≲10% lower detection efficiency than tracking a single component. In directed continuous-wave searches where f⋆ is unknown and hence the full frequency band is searched, the computationally efficient HMM tracking algorithm provides an option of conducting both the dual-harmonic search and the conventional single frequency tracking to obtain optimal sensitivity, with a typical run time of ∼10^3 core-hr for one year's observation.

Additional Information

© 2019 American Physical Society. Received 9 March 2019; published 13 June 2019. We are grateful to the LIGO and Virgo Continuous Wave Working Group for informative discussions, and S. Walsh for the review and comments. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation, and operates under Cooperative Agreement No. PHY-0757058. Advanced LIGO was built under Grant No. PHY-0823459. P. D. Lasky is supported through ARC Future Fellowship No. FT160100112 and Discovery Project No. DP180103155. The research is also supported by Australian Research Council (ARC) Discovery Project No. DP170103625 and the ARC Centre of Excellence for Gravitational Wave Discovery No. CE170100004. This paper carries LIGO Document No. LIGO-P1900029.

Attached Files

Published - PhysRevD.99.123010.pdf

Submitted - 1903.03866.pdf

Files

1903.03866.pdf
Files (1.4 MB)
Name Size Download all
md5:aef1da14a4201d3cfaed9bd3dca73a4a
751.5 kB Preview Download
md5:403e971ceb6a8a42edcce184e6eb32c5
671.5 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023