Published October 1, 2019 | public
Journal Article

Direct and embodied energy-water-carbon nexus at an inter-regional scale

An error occurred while generating the citation.

Abstract

Energy, water and carbon flows are highly intertwined in economy and influence urban and regional sustainability. Few insights have been acquired for energy-water-carbon nexus at inter-regional scale considering both in- and trans-boundary flows. Here we propose an interactive framework to assess inter-regional energy-water-carbon nexus, encapsulating both direct nexus flows within territory and nexus flows embodied in final consumption. An inter-regional input-output model is established to account for energy-related water footprint, water-related energy footprint and water-related carbon footprint from a consumption-based perspective. Using Guangdong-Hong Kong as a case study, we find that though these nexus footprints contribute a small fraction of the total energy, water and carbon footprints of both regions in 2012, their impacts should not be neglected due to higher intensities. The direct intensities of water-related energy and water-related carbon are more than 2 times higher than the total energy and carbon intensities, while their embodied intensities are over 6 times higher. Inter-regional trade plays an important role in controlling energy-water-carbon nexus of both sides. About 29–44% of the consumption-based nexus footprints of Hong Kong's consumption are outsourced to Guangdong and other regions, while 21–24% of Guangdong's footprints are from production elsewhere. These are strong signals showing the importance of managing energy-water-carbon nexus on a cross-border and fully-interactive basis.

Additional Information

© 2019 Elsevier Ltd. Received 17 March 2019, Revised 14 May 2019, Accepted 20 May 2019, Available online 27 May 2019.

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023