Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2019 | public
Book Section - Chapter

Imitation Refinement for X-ray Diffraction Signal Processing

Abstract

Many real-world tasks involve identifying signals from data satisfying background or prior knowledge. In domains like materials discovery, due to the flaws and biases in raw experimental data, the identification of X-ray diffraction (XRD) signals often requires significant (manual) expert work to find refined signals that are similar to the ideal theoretical ones. Automatically refining the raw XRD signals utilizing simulated theoretical data is thus desirable. We propose imitation refinement, a novel approach to refine imperfect input signals, guided by a pre-trained classifier incorporating prior knowledge from simulated theoretical data, such that the refined signals imitate the ideal ones. The classifier is trained on the ideal simulated data to classify signals and learns an embedding space where each class is represented by a prototype. The refiner learns to refine the imperfect signals with small modifications, such that their embeddings are closer to the corresponding prototypes. We show that the refiner can be trained in both supervised and unsupervised fashions. We further illustrate the effectiveness of the proposed approach both qualitatively and quantitatively in an X-ray diffraction signal refinement task in materials discovery.

Additional Information

© 2019 IEEE. Work supported by an NSF Expedition award for Computational Sustainability (CCF-1522054), NSF Computing Research Infrastructure (CNS-1059284), NSF Inspire (1344201), a MURI/AFOSR grant (FA9550), and a grant from the Toyota Research Institute.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023