Time-reversed ultrasonically encoded (TRUE) optical focusing through highly scattering ex vivo human cataractous lenses for congenital cataract treatment (Conference Presentation)
Abstract
Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded (TRUE) optical focusing in reflection mode, we focused 532 nm light through a highly scattering ex vivo adult human cataractous lens of 112 mean free path thick. This work demonstrates a potential clinical application of wavefront shaping techniques.
Additional Information
© 2019 Society of Photo-optical Instrumentation Engineers (SPIE).Additional details
- Eprint ID
- 94475
- Resolver ID
- CaltechAUTHORS:20190404-151930944
- Created
-
2019-04-04Created from EPrint's datestamp field
- Updated
-
2021-11-16Created from EPrint's last_modified field
- Series Name
- Proceedings of SPIE
- Series Volume or Issue Number
- 10886