Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 1, 2019 | Supplemental Material
Journal Article Open

Aragonite dissolution kinetics and calcite/aragonite ratios in sinking and suspended particles in the North Pacific

Abstract

The lack of consensus on CaCO₃ dissolution rates and calcite to aragonite production and export ratios in the ocean poses a significant barrier for the construction of global carbon budgets. We present here a comparison of aragonite dissolution rates measured in the lab vs. in situ along a transect between Hawaii and Alaska using a ¹³C labeling technique. Our results show a general agreement of aragonite dissolution rates in the lab versus in the field, and demonstrate that aragonite, like calcite, shows a non-linear response of dissolution rate as a function of saturation state (Ω). Total carbon fluxes along the N. Pacific transect in August 2017, as determined using sediment traps, account for 11∼23 weight % of total mass fluxes in the upper 200 m, with a PIC (particulate inorganic carbon)/POC (particulate organic carbon) mole ratio of 0.2∼0.6. A comparison of fluxes at depths of 100 m and 200 m indicates that 30∼60% PIC dissolves between these depths with 20∼70% attenuation in POC fluxes. The molar ratio of PIC to POC loss is 0.29. The simultaneous loss of PIC and POC in the upper 200 m potentially indicates PIC dissolution driven by organic matter respiration, or metazoan/zooplankton consumption. The calcite/aragonite ratio in trap material is significantly lower in the subtropical gyre than in the subarctic gyre. Aragonite fluxes vary from 0.07 to 0.38 mmol m⁻² day⁻¹ at 100 m, and 0.06 to 0.24 mmol m⁻² day⁻¹ at 200 m along the North Pacific transect, with no specific trend over latitude. The identification of suspended PIC mineral phases by Raman spectroscopy shows the presence of aragonite below 3000 m in the subtropical gyre, but none in the subpolar gyre. These multiple lines of evidence suggest that predictions based on a strictly thermodynamic view of aragonite dissolution, combined with measured aragonite fluxes, underestimate observed alkalinity excess and measured PIC attenuation in sinking particles. Our measured aragonite flux combined with our inorganic dissolution rate only account for 9% and 0.2% of the excess alkalinity observed in the North Pacific (Feely et al., 2004), assuming aragonite sinking rates of 1 m day⁻¹ and 100 m day⁻¹, respectively. However, respiration-driven dissolution or metazoan/zooplankton consumption, indicated by the simultaneous attenuation of PIC and POC in sediment traps, is able to generate the magnitude of dissolution suggested by observed excess alkalinity.

Additional Information

© 2019 Elsevier B.V. Received 8 November 2018, Revised 8 March 2019, Accepted 10 March 2019, Available online 22 March 2019. This work was supported by NSF Ocean Acidification grants (numbers OCE1220600 and OCE1220302), USC Dornsife Doctoral Fellowship, Elizabeth and Jerol Sonosky Fellowship, the Sea Grant Fellowship, and the Resnick Sustainability Institute Graduate Fellowship. The authors would like to acknowledge editor Derek Vance, reviewer Jack Middelburg and another anonymous reviewer for their invaluable comments of the original manuscript. We thank the captain and crews on Kilo Moana for their assistance at sea. We also acknowledge Christopher Moore, Loraine Martell-Bonet for their help measuring pH and alkalinity during CDisK-IV; Yi Hou for leak-checking the Niskin Incubators by measuring dissolved Si concentrations; Doug Hammond for providing the in situ pumps; Johnny Stutsman and James Rae for their help deploying and recovering in situ pumps; as well as Abby Lunstrum and Huanting Hu for their help picking out swimmers from the sediment trap samples.

Attached Files

Supplemental Material - 1-s2.0-S0012821X19301645-mmc1.pdf

Files

1-s2.0-S0012821X19301645-mmc1.pdf
Files (1.4 MB)
Name Size Download all
md5:68efbeab0d9c2bee31dd159dd2b1a946
1.4 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023