Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 15, 2019 | public
Journal Article

Higher-order implicit-explicit multi-domain compressible Navier-Stokes solvers

Abstract

This paper presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional multi-domains. Building up on the recent single-domain ADI-based high-order Navier-Stokes solvers (Bruno and Cubillos, Journal of Computational Physics 307 (2016) 476-495) this article presents multi-domain implicit-explicit methods of high-order of temporal accuracy. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of high-order backward differentiation formulae (BDF) and an alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Nearly dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. As demonstrated via a variety of numerical experiments in two and three dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, robust stability properties, limited dispersion, and high parallel efficiency.

Additional Information

© 2019 Elsevier. Received 30 May 2018, Revised 16 February 2019, Accepted 19 February 2019, Available online 7 March 2019. The authors gratefully acknowledge support by NSF and AFOSR and DARPA through contracts DMS-1411876, DMS-1714169, FA9550-15-1-0043 and HR00111720035, and the NSSEFF Vannevar Bush Fellowship under contract number N00014-16-1-2808.

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023