Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2006 | Published
Book Section - Chapter Open

How to Determine a Good Multi-Programming Level for External Scheduling

Abstract

Scheduling/prioritization of DBMS transactions is important for many applications that rely on database backends. A convenient way to achieve scheduling is to limit the number of transactions within the database, maintaining most of the transactions in an external queue, which can be ordered as desired by the application. While external scheduling has many advantages in that it doesn't require changes to internal resources, it is also difficult to get right in that its performance depends critically on the particular multiprogramming limit used (the MPL), i.e. the number of transactions allowed into the database. If the MPL is too low, throughput will suffer, since not all DBMS resources will be utilized. On the other hand, if the MPL is too high, there is insufficient control on scheduling. The question of how to adjust theMPL to achieve both goals simultaneously is an open problem, not just for databases but in system design in general. Herein we study this problem in the context of transactional workloads, both via extensive experimentation and queueing theoretic analysis. We find that the two most critical factors in adjusting the MPL are the number of resources that the workload utilizes and the variability of the transactions' service demands. We develop a feedback based controller, augmented by queueing theoretic models for automatically adjusting the MPL. Finally, we apply our methods to the specific problem of external prioritization of transactions. We find that external prioritization can be nearly as effective as internal prioritization, without any negative consequences, when the MPL is set appropriately.

Additional Information

© 2006 IEEE. Supported by NSF grants CCR-0133077, CCR-0311383, 0313148, and a 2005 Pittsburgh Digital Greenhouse Grant.

Attached Files

Published - 01617428.pdf

Files

01617428.pdf
Files (283.6 kB)
Name Size Download all
md5:8ad5e671d1f829948b6284c61a0b5476
283.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023