Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 25, 2004 | Published
Book Section - Chapter Open

Science camera calibration for extreme adaptive optics

Abstract

The nascent field of planet detection has yielded a host of extra-solar planet detections. To date, these detections have been the result of indirect techniques: the planet is inferred by precisely measuring its effect on the host star. Direct observation of extra-solar planets remains a challenging yet compelling goal. In this vein, the Center for Adaptive Optics has proposed a ground-based, high-actuator density extreme AO system (XAOPI), for a large (~10 m) telescope whose ultimate goal is to directly evidence a specific class of these objects: young and massive planets. Detailed system wave-front error budgets suggest that this system is a feasible, if not an ambitious, proposition. One key element in this error budget is the calibration and maintenance of the science camera wave front with respect to the wave-front sensor which currently has an allowable contribution of ~ 5 nanometers rms. This talk first summarizes the current status of calibration on existing ground-based AO systems, the magnitude of this effect in the system error budget and current techniques for mitigation. Subsequently, we will explore the nature of this calibration error term, it's source in the non-commonality between the science camera and wave front sensor, and the effect of the temporal evolution of non-commonality. Finally, we will describe preliminary plans for sensing and controlling this error term. The sensing techniques include phase retrieval, phase contrast and external metrology. To conclude, a calibration scenario that meets the stringent requirement for XAOPI will be discussed.

Additional Information

© 2004 Society of Photo-Optical Instrumentation Engineers (SPIE). This work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work has been supported in part or full by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783.

Attached Files

Published - 370.pdf

Files

370.pdf
Files (205.2 kB)
Name Size Download all
md5:f477a482fe4d518944b8f8bb5c5ff036
205.2 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024