Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2018 | public
Book Section - Chapter

Structured Feedback Optimization for Metzler Dynamics

Abstract

We propose a method to compute convergent lower bounds for the state-feedback controller design problem Inf/F {L(F):A+BF is Metzler & stable} where L is a convex loss function of F . The theory behind the approach is simple: relying only on an extension of Perron-Frobenius to Metzler matrices, and popular discrete optimization techniques. The method itself has two tuning parameters (which enable faster recovery of solutions, with possible introduction of optimality gaps) and is practical for systems with a non-trivial state dimension. A convergence result with respect to the optimal solution is derived, and a direct heuristic algorithm based on linear programming is given. We explain how projecting A onto the set of stable Metzler matrices is essentially the hardest of these problems, and focus our numerical examples on precisely this case.

Additional Information

© 2018 IEEE. JA is supported by NSF grants CCF 1637598 and ECCS 1619352 and DTRA grant HDTRA 1-15-1-003. RM is supported by funding from grants NSF AitF-1637598 and CPS-154471.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023