Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2019 | Published + Submitted
Book Section - Chapter Open

Quantum proof systems for iterated exponential time, and beyond

Abstract

We show that any language solvable in nondeterministic time exp( exp(⋯exp(n))), where the number of iterated exponentials is an arbitrary function R(n), can be decided by a multiprover interactive proof system with a classical polynomial-time verifier and a constant number of quantum entangled provers, with completeness 1 and soundness 1 − exp(−Cexp(⋯exp(n))), where the number of iterated exponentials is R(n)−1 and C>0 is a universal constant. The result was previously known for R=1 and R=2; we obtain it for any time-constructible function R. The result is based on a compression technique for interactive proof systems with entangled provers that significantly simplifies and strengthens a protocol compression result of Ji (STOC'17). As a separate consequence of this technique we obtain a different proof of Slofstra's recent result on the uncomputability of the entangled value of multiprover games (Forum of Mathematics, Pi 2019). Finally, we show that even minor improvements to our compression result would yield remarkable consequences in computational complexity theory and the foundations of quantum mechanics: first, it would imply that the class MIP* contains all computable languages; second, it would provide a negative resolution to a multipartite version of Tsirelson's problem on the relation between the commuting operator and tensor product models for quantum correlations.

Additional Information

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. We thank the anonymous STOC 2019 referees for helpful comments that have improved the presentation of this paper. Joseph Fitzsimons acknowledges support from Singapore's Ministry of Education and National Research Foundation, and the US Air Force Office of Scientific Research under AOARD grant FA2386-15-1-4082. This material is based on research funded in part by the Singapore National Research Foundation under NRF Award NRFNRFF2013-01. Thomas Vidick is supported by NSF CAREER Grant CCF-1553477, AFOSR YIP award number FA9550-16-1-0495, a CIFAR Azrieli Global Scholar award, and the IQIM, an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028). Henry Yuen conducted the research for this work as a postdoctoral fellow at the University of California, Berkeley.

Attached Files

Published - 3313276.3316343.pdf

Submitted - 1805.12166.pdf

Files

1805.12166.pdf
Files (1.3 MB)
Name Size Download all
md5:b377955c8c202fd5436661d13560344c
566.6 kB Preview Download
md5:3402023b086f0be2a821b864a76594bc
769.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023