Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 1, 2019 | Submitted
Report Open

Input to State Stability of Bipedal Walking Robots: Application to DURUS

Abstract

Bipedal robots are a prime example of systems which exhibit highly nonlinear dynamics, underactuation, and undergo complex dissipative impacts. This paper discusses methods used to overcome a wide variety of uncertainties, with the end result being stable bipedal walking. The principal contribution of this paper is to establish sufficiency conditions for yielding input to state stable (ISS) hybrid periodic orbits, i.e., stable walking gaits under model-based and phase-based uncertainties. In particular, it will be shown formally that exponential input to state stabilization (e-ISS) of the continuous dynamics, and hybrid invariance conditions are enough to realize stable walking in the 23-DOF bipedal robot DURUS. This main result will be supported through successful and sustained walking of the bipedal robot DURUS in a laboratory environment.

Additional Information

This work is supported by the National Science Foundation through grants NRI-1526519

Attached Files

Submitted - 1801.00618.pdf

Files

1801.00618.pdf
Files (7.9 MB)
Name Size Download all
md5:c48c125d259fc27505f4acc64f4fb8e6
7.9 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023