Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 7, 2004 | Published
Book Section - Chapter Open

Wavefront reconstruction algorithms and simulation results for multiconjugate adaptive optics on giant telescopes

Abstract

The very high-order multi-conjugate adaptive optics (MCAO) systems proposed for future giant telescopes will require new, computationally efficient, concepts for wavefront reconstruction. Advanced methods from computational linear algebra have recently been applied to this problem, and explicit simulations of MCAO wavefront reconstruction problems for 30-meter class telescopes are now possible using desktop personal computers. In this paper, we present sample simulation results obtained using these techniques to illustrate the trends in MCAO performance as the telescope aperture diameter increases from 8 to 32 meters. We consider systems based upon natural guidestars, sodium laser guidestars, and Rayleigh laser guidestars. The performance achieved by the first two classes of guidestars is similar, and the variation in their performance with respect to telescope size is very gradual over this range of aperture diameters. Next, we describe work in progress to adapt the minimum variance reconstruction algorithm, which is optimized for open-loop wavefront estimation, to the more realistic and meaningful case of closed-loop wavefront control. Finally, we summarize the current status of efforts to quantify the impact of sodium laser guide star (LGS) elongation on guidestar signal requirements for LGS AO systems on 30 meter class telescopes.

Additional Information

© 2004 Society of Photo-optical Instrumentation Engineers (SPIE). The New Initiatives Office is a partnership between two divisions of the Association of Universities for Research in Astronomy (AURA), Inc.: The National Optical Astronomy Observatory (NOAO) and the Gemini Observatory. NOAO is operated by AURA under a cooperative agreement with the National Science Foundation (NSF). The Gemini Observatory is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).

Attached Files

Published - 478.pdf

Files

478.pdf
Files (504.4 kB)
Name Size Download all
md5:c666f35276e472bd737a596e051f4fc8
504.4 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024