Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 7, 2004 | Published
Book Section - Chapter Open

Active optics challenges of a thirty-meter segmented mirror telescopy

Abstract

Ground-based telescopes operate in a turbulent atmosphere that affects the optical path across the aperture by changing both the mirror positions (wind seeing) and the air refraction index in the light path (atmospheric seeing). In wide field observations, when adaptive optics is not feasible, active optics are the only means of minimizing the effects of wind buffeting. An integrated, dynamic model of wind buffeting, telescope structure, and optical performance was devleoped to investigate wind energy propagation into primary mirror modes and secondary mirror rigid body motion.Although the rsults showed that the current level of wind modeling was not appropriate to decisively settle the need for optical feedback loops in active optics, the simulations strongly indicated the capability of a limited bandwidth edge sensor loop to maintain the continuity of the primary mirror inside the preliminary error budget. It was also found that the largest contributor to the wind seeing is image jitter, i.e. OPD tip/tilt.

Additional Information

© 2004 Society of Photo-optical Instrumentation Engineers (SPIE). The New Initiatives Office is a partnership between two divisions of the Association of Universities for Research in Astronomy (AURA), Inc.: the National Optical Astronomy Observatory (NOAO) and the Gemini Observatory. NOAO is operated by AURA under cooperative agreement with the National Science Foundation (NSF). The Gemini Observatory is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).

Attached Files

Published - 337.pdf

Files

337.pdf
Files (454.4 kB)
Name Size Download all
md5:c315bdcb97c5f82f22a47a5a1770eb47
454.4 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024