Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 11, 2018 | Published + Accepted Version
Journal Article Open

A new physical interpretation of optical and infrared variability in quasars

Abstract

Changing-look quasars are a recently identified class of active galaxies in which the strong UV continuum and/or broad optical hydrogen emission lines associated with unobscured quasars either appear or disappear on time-scales of months to years. The physical processes responsible for this behaviour are still debated, but changes in the black hole accretion rate or accretion disc structure appear more likely than changes in obscuration. Here, we report on four epochs of spectroscopy of SDSS J110057.70−005304.5, a quasar at a redshift of z = 0.378 whose UV continuum and broad hydrogen emission lines have faded, and then returned over the past ≈20 yr. The change in this quasar was initially identified in the infrared, and an archival spectrum from 2010 shows an intermediate phase of the transition during which the flux below rest frame ≈3400 Å has decreased by close to an order of magnitude. This combination is unique compared to previously published examples of changing-look quasars, and is best explained by dramatic changes in the innermost regions of the accretion disc. The optical continuum has been rising since mid-2016, leading to a prediction of a rise in hydrogen emission-line flux in the next year. Increases in the infrared flux are beginning to follow, delayed by a ∼3 yr observed time-scale. If our model is confirmed, the physics of changing-look quasars are governed by processes at the innermost stable circular orbit around the black hole, and the structure of the innermost disc. The easily identifiable and monitored changing-look quasars would then provide a new probe and laboratory of the nuclear central engine.

Additional Information

© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) Accepted 2018 July 23. Received 2018 July 23; in original form 2018 May 17. NPR acknowledges support from the STFC and the Ernest Rutherford Fellowship scheme. KESF and BM are supported by NSF PAARE AST-1153335. KESF and BM thank CalTech/JPL for support during sabbatical. MF acknowledges support from NSF grants AST-1518308, AST-1749235, AST-1413600, and NASA grant 16-ADAP16-0232. RJA was supported by FONDECYT grant number 1151408. AMM acknowledges support from NASA ADAP grant NNH17AE75I. HDJ was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A3A04005158). We thank David J. Schlegel for quality checks on the BOSS data, and Chris Done for invigorating discussions at the concept and conclusion of this work. We also thank Giorgio Calderone for discussions on QSFit. This publication makes use of data products from the WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Extragalactic Database (NED) that is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of data obtained from the SuperCOSMOS Science Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council. The GALEX GR6/7 Data Release hosted at http://galex.stsci.edu/GR6/ was used. These data were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

Attached Files

Published - sty2002.pdf

Accepted Version - 1805.06921

Files

sty2002.pdf
Files (2.1 MB)
Name Size Download all
md5:ae2801ca679831263de030a5ee1ed3d7
790.7 kB Preview Download
md5:b9f59d3e81de7d10a1337dcc9544b4f8
1.3 MB Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023