Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2001 | Published
Book Section - Chapter Open

High-Order Boundary Perturbation Methods

Abstract

Perturbation theory is among the most useful and successful analytical tools in applied mathematics. Countless examples of enlightening perturbation analyses have been performed for a wide variety of models in areas ranging from fluid, solid, and quantum mechanics to chemical kinetics and physiology. The field of electromagnetic and acoustic wave propagation is certainly no exception. Many studies of these processes have been based on perturbative calculations where the role of the variation parameter has been played by the wavelength of radiation, material constants, or geometric characteristics. It is this latter instance of geometric perturbations in problems of wave propagation that we shall review in the present chapter. Use of geometric perturbation theory is advantageous in the treatment of configurations which, however complex, can be viewed as deviations from simpler ones—those for which solutions are known or can be obtained easily. Many uses of such methods exist, including, among others, applications to optics, oceanic and terrain scattering, SAR imaging and remote sensing, and diffraction from ablated, eroded, or deformed objects; see, e.g., [47, 52, 56, 59, 62]. The analysis of the scattering processes involved in such applications poses challenging computational problems that require resolution of the interplay between highly oscillatory waves and interfaces. In the case of oceanic scattering, for instance, nonlinear water wave interactions and capillarity effects give rise to highly oscillatory modulated wave trains that are responsible for the most substantial portions of the scattering returns [35].

Additional Information

© 2001 SIAM.

Attached Files

Published - 1.9780898717594.ch3.pdf

Files

1.9780898717594.ch3.pdf
Files (814.0 kB)
Name Size Download all
md5:f80436dd53ce39e5df46817ee44cee1a
814.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023