Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 20, 2018 | Published + Accepted Version
Journal Article Open

Galaxy Ellipticity Measurements in the Near-infrared for Weak Lensing

Abstract

We investigate the value of the near-infrared imaging from upcoming surveys for constraining the ellipticities of galaxies. We select galaxies between 0.5 ≤ z < 3 that are brighter than expected Euclid sensitivity limits from the GOODS-S and N fields in CANDELS. The co-added CANDELS/HST V+I and J+H images are degraded in resolution and sensitivity to simulate Euclid-quality optical and near-infrared (NIR) images. We then run GALFIT on these simulated images and find that optical and NIR provide similar performances in measuring galaxy ellipticities at redshifts 0.5 ≤ z < 3. At z > 1.0, the NIR-selected source density is higher by a factor of 1.4 and therefore the standard error in NIR-derived ellipticities is about 30% smaller, implying a more precise ellipticity measurement. The good performance of the NIR is mainly because galaxies have an intrinsically smoother light distribution in the NIR bands than in the optical, the latter tracing the clumpy star-forming regions. In addition, the NIR bands have a higher surface brightness per pixel than the optical images, while being less affected by dust attenuation. Despite the worse spatial sampling and resolution of Euclid NIR compared to optical, the NIR approach yields equivalent or more precise galaxy ellipticity measurements. If systematics that affect shape such as dithering strategy and point-spread function undersampling can be mitigated, inclusion of the NIR can improve galaxy ellipticity measurements over all redshifts. This is particularly important for upcoming weak lensing surveys, such as with Euclid and WFIRST.

Additional Information

© 2018 The American Astronomical Society. Received 2018 May 20; revised 2018 September 5; accepted 2018 September 5; published 2018 October 24. This work is partly funded by NASA/Euclid grant 1484822 and is based on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The authors thank the anonymous referee for very useful comments that helped to improve the presentation of the paper. We also thank Lance Miller, Stefanie Wachter, Peter Schneider, Henk Hoekstra, and Jason Rhodes for thoughtful comments that improved this manuscript.

Attached Files

Published - Lee_2018_ApJ_866_157.pdf

Accepted Version - 1808.05223.pdf

Files

Lee_2018_ApJ_866_157.pdf
Files (2.6 MB)
Name Size Download all
md5:6b3c228d5bfb15cefd647664c631e9ee
1.6 MB Preview Download
md5:a74815fa3c449f599afeb2aa6e387d92
948.7 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023