Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2018 | public
Journal Article

Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method

Abstract

The auxiliary‐field quantum Monte Carlo (AFQMC) method provides a computational framework for solving the time‐independent Schrödinger equation in atoms, molecules, solids, and a variety of model systems. AFQMC has recently witnessed remarkable growth, especially as a tool for electronic structure computations in real materials. The method has demonstrated excellent accuracy across a variety of correlated electron systems. Taking the form of stochastic evolution in a manifold of nonorthogonal Slater determinants, the method resembles an ensemble of density‐functional theory (DFT) calculations in the presence of fluctuating external potentials. Its computational cost scales as a low‐power of system size, similar to the corresponding independent‐electron calculations. Highly efficient and intrinsically parallel, AFQMC is able to take full advantage of contemporary high‐performance computing platforms and numerical libraries. In this review, we provide a self‐contained introduction to the exact and constrained variants of AFQMC, with emphasis on its applications to the electronic structure of molecular systems. Representative results are presented, and theoretical foundations and implementation details of the method are discussed.

Additional Information

© 2018 Wiley Periodicals, Inc. Issue Online: 10 August 2018; Version of Record online: 25 May 2018; Manuscript accepted: 19 March 2018; Manuscript revised: 26 February 2018; Manuscript received: 30 October 2017.

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023