Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 1, 2018 | Published + Accepted Version
Journal Article Open

The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

Abstract

Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The clustercentric radius at which this process occurs, r_(sp), defines a halo boundary that is connected to the dynamics of the cluster. A rapid decline in the halo profile is expected near r_(sp). We measure the galaxy number density and weak lensing mass profiles around REDMAPPER galaxy clusters in the first-year Dark Energy Survey (DES) data. For a cluster sample with mean M_(200m) mass ≈2.5 × 10^(14) M⊙, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_(sp) = 1.13 ± 0.07 h^(−1) Mpc, consistent with the earlier Sloan Digital Sky Survey measurements of More et al. and Baxter et al. Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_(sp) = 1.34 ± 0.21 h^(−1) Mpc from the weak lensing data, in good agreement with our galaxy density measurements. For different cluster and galaxy samples, we find that, consistent with ΛCDM simulations, r_(sp) scales with R_(200m) and does not evolve with redshift over the redshift range of 0.3–0.6. We also find that potential systematic effects associated with the REDMAPPER algorithm may impact the location of r_(sp). We discuss the progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.

Additional Information

© 2018. The American Astronomical Society. Received 2017 October 23; revised 2018 July 23; accepted 2018 July 23; published 2018 August 31. C.C. and A.K. were supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder, Fred Kavli. E.B. and B.J. are partially supported by US Department of Energy grant DE-SC0007901. T.N.V. was supported by the SFB-Transregio 33 The Dark Universe by the Deutsche Forschungsgemeinschaft (DFG) and the DFG Cluster of Excellence "Origin and Structure of the Universe." The weak lensing boost factors were calculated and calibrated using the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP). D.R. is supported by a NASA Postdoctoral Program Senior Fellowship at the NASA Ames Research Center, administered by the Universities Space Research Association under contract with NASA. The CosmoSim database used in this paper is a service by the Leibniz-Institute for Astrophysics Potsdam (AIP). The MultiDark database was developed in cooperation with the Spanish MultiDark Consolider Project CSD2009-00064. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) and the Partnership for Advanced Supercomputing in Europe (PRACE; www.prace-ri.eu) for funding the MultiDark simulation project by providing computing time on the GCS Supercomputer SuperMUC at the Leibniz Supercomputing Centre (LRZ; www.lrz.de). The Bolshoi simulations have been performed within the Bolshoi project of the University of California High-Performance AstroComputing Center (UC-HiPACC) and were run at the NASA Ames Research Center. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l'Espai (IEEC/CSIC), the Institut de Física d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. The IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007–2013), including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) through project number CE110001020. This manuscript has been authored by the Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This paper has gone through internal review by the DES collaboration.

Attached Files

Published - Chang_2018_ApJ_864_83.pdf

Accepted Version - 1710.06808

Files

Chang_2018_ApJ_864_83.pdf
Files (2.6 MB)
Name Size Download all
md5:ffac913bd255308587274704b48da183
1.5 MB Download
md5:92175765b43f29b5b50f06203f4879a1
1.2 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023