Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 1, 2018 | Published + Accepted Version
Journal Article Open

"Super-deblended" Dust Emission in Galaxies. II. Far-IR to (Sub)millimeter Photometry and High-redshift Galaxy Candidates in the Full COSMOS Field

Abstract

We present a "super-deblended" far-infrared (FIR) to (sub)millimeter photometric catalog in the Cosmic Evolution Survey (COSMOS), prepared with the method recently developed by Liu et al., with key adaptations. We obtain point-spread function fitting photometry at fixed prior positions including 88,008 galaxies detected in VLA 1.4, 3 GHz, and/or MIPS 24 μm images. By adding a specifically carved mass-selected sample (with an evolving stellar mass limit), a highly complete prior sample of 194,428 galaxies is achieved for deblending FIR/(sub)mm images. We performed "active" removal of nonrelevant priors at FIR/(sub)mm bands using spectral energy distribution fitting and redshift information. In order to cope with the shallower COSMOS data, we subtract from the maps the flux of faint nonfitted priors and explicitly account for the uncertainty of this step. The resulting photometry (including data from Spitzer, Herschel, SCUBA2, AzTEC, MAMBO, and NSF's Karl G. Jansky Very Large Array at 3 and 1.4 GHz) displays well-behaved quasi-Gaussian uncertainties calibrated from Monte Carlo simulations and tailored to observables (crowding, residual maps). Comparison to ALMA photometry for hundreds of sources provides a remarkable validation of the technique. We detect 11,220 galaxies over the 100–1200 μm range extending to z_(phot) ~ 7. We conservatively selected a sample of 85 z > 4 high-redshift candidates significantly detected in the FIR/(sub)mm, often with secure radio and/or Spitzer/IRAC counterparts. This provides a chance to investigate the first generation of vigorous starburst galaxies (SFRs ~ 1000 M_⊙ yr^(−1)). The photometric and value-added catalogs are publicly released.

Additional Information

© 2018. The American Astronomical Society. Received 2018 February 6; revised 2018 July 3; accepted 2018 July 9; published 2018 August 30. We are grateful to the full COSMOS team for their contributions in the buildup of such a rich multiwavelength data set. We thank the referee for useful comments and suggestions that helped improve the paper. We thank B. Magnelli, P. Lang, and the rest of the A^3COSMOS team for providing the ALMA photometry for comparison. SJ acknowledges funding from the China Scholarship Council. SJ and QG acknowledge support from the National Key Research and Development Program of China (No. 2017YFA0402703) and the National Natural Science Foundation of China (No. 11733002). D.L. and Y.G. acknowledge support from the National Key Research and Development Program (No. 2017YFA0402704) and the National Natural Science Foundation of China (No. 11420101002). V.S., J.D., and I.D. acknowledge support from the European Union's Seventh Framework program under grant agreement 337595 (ERC Starting Grant, "CoSMass"). ES and DL acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 694343). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. ALMA is a partnership of the ESO (representing its member states), NSF (USA), and NINS (Japan), together with the NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by the ESO, AUI/NRAO, and NAOJ.

Attached Files

Published - Jin_2018_ApJ_864_56.pdf

Accepted Version - 1807.04697

Files

Jin_2018_ApJ_864_56.pdf
Files (39.7 MB)
Name Size Download all
md5:bc5f8e9b5736b95fc26a0ae8ac0c1320
32.5 MB Download
md5:b2abbf7fb21f0ab806ec7eaebda52608
7.2 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023