Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2018 | Published
Journal Article Open

Baroclinic Adjustment and Dissipative Control of Storm Tracks

Abstract

The steady-state response of a midlatitude storm track to large-scale extratropical thermal forcing and eddy friction is investigated in a dry general circulation model with a zonally symmetric forcing. A two-way equilibration is found between the relative responses of the mean baroclinicity and baroclinic eddy intensity, whereby mean baroclinicity responds more strongly to eddy friction whereas eddy intensity responds more strongly to the thermal forcing of baroclinicity. These seemingly counterintuitive responses are reconciled using the steady state of a predator–prey relationship between baroclinicity and eddy intensity. This relationship provides additional support for the well-studied mechanism of baroclinic adjustment in Earth's atmosphere, as well as providing a new mechanism whereby eddy dissipation controls the large-scale thermal structure of a baroclinically unstable atmosphere. It is argued that these two mechanisms of baroclinic adjustment and dissipative control should be used in tandem when considering storm-track equilibration.

Additional Information

© 2018 American Meteorological Society. Manuscript received 21 July 2017, in final form 11 June 2018. This work is supported by the U.K. Natural Environment Research Council (Grant NE/M014932/1), and we thank our reviewers for their very helpful feedback.

Attached Files

Published - jas-d-17-0210.1.pdf

Files

jas-d-17-0210.1.pdf
Files (1.4 MB)
Name Size Download all
md5:0f00de9feed87f3b4b014e560a554610
1.4 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023