Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2018 | Supplemental Material
Journal Article Open

Nanophotonic optical gyroscope with reciprocal sensitivity enhancement

Abstract

Optical gyroscopes measure the rate of rotation by exploiting a relativistic phenomenon known as the Sagnac effect. Such gyroscopes are great candidates for miniaturization onto nanophotonic platforms. However, the signal-to-noise ratio of optical gyroscopes is generally limited by thermal fluctuations, component drift and fabrication mismatch. Due to the comparatively weaker signal strength at the microscale, integrated nanophotonic optical gyroscopes have not been realized so far. Here, we demonstrate an all-integrated nanophotonic optical gyroscope by exploiting the reciprocity of passive optical networks to significantly reduce thermal fluctuations and mismatch. The proof-of-concept device is capable of detecting phase shifts 30 times smaller than state-of-the-art miniature fibre-optic gyroscopes, despite being 500 times smaller in size. Thus, our approach is capable of enhancing the performance of optical gyroscopes by one to two orders of magnitude.

Additional Information

© 2018 Springer Nature Limited. Received 09 April 2018. Accepted 04 September 2018. Published 08 October 2018. The authors thank A. Khachaturian, B. Hong and B. Abiri for technical discussions. Author Contributions: P.P.K. and A.H. conceived and designed the device. Simulations and measurements were performed by P.P.K. and A.D.W. Analysis of the results was carried out by P.P.K., A.D.W. and A.H. All authors participated in writing the manuscript. Data availability: The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. The authors declare no competing interests.

Errata

In the version of this Letter originally published online, a '7' was mistakenly included at the beginning of the second line of equation (4); it has now been removed.

Attached Files

Supplemental Material - 41566_2018_266_MOESM1_ESM.pdf

Files

41566_2018_266_MOESM1_ESM.pdf
Files (17.4 MB)
Name Size Download all
md5:74d1c6a462ce9063f0dc767fbacd235a
17.4 MB Preview Download

Additional details

Created:
September 22, 2023
Modified:
October 23, 2023