Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2005 | Published
Journal Article Open

Microrheology of colloidal dispersions by Brownian dynamics simulations

Abstract

We investigate active particle-tracking microrheology in a colloidal dispersion by Brownian dynamics simulations. A probe particle is dragged through the dispersion with an externally imposed force in order to access the nonlinear viscoelastic response of the medium. The probe's motion is governed by a balance between the external force and the entropic "reactive" force of the dispersion resulting from the microstructural deformation. A "microviscosity" is defined by appealing to the Stokes drag on the probe and serves as a measure of the viscoelastic response. This microviscosity is a function of the Péclet number (Pe=Fa∕kT)(Pe=Fa∕kT)—the ratio of "driven" (F)(F) to diffusive (kT∕a)(kT∕a) transport—as well as of the volume fraction of the force-free bath particles making up the colloidal dispersion. At low Pe—in the passive microrheology regime—the microviscosity can be directly related to the long-time self-diffusivity of the probe. As Pe increases, the microviscosity "force-thins" until another Newtonian plateau is reached at large Pe. Microviscosities for all Péclet numbers and volume fractions can be collapsed onto a single curve through a simple volume fraction scaling and equate well to predictions from dilute microrheology theory. The microviscosity is shown to compare well with traditional macrorheology results (theory and simulations).

Additional Information

© 2005 The Society of Rheology. (Received 24 June 2005; final revision received 30 August 2005) The authors would like to thank Todd Squires and Aditya Khair for valuable discussions.

Attached Files

Published - 1.2085174.pdf

Files

1.2085174.pdf
Files (906.0 kB)
Name Size Download all
md5:87f62da85ed140640c13689c5c78532e
906.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023