Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 8, 2018 | Supplemental Material
Journal Article Open

Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices

Abstract

Creating materials that simultaneously possess ultralow thermal conductivity, high stiffness, and damage tolerance is challenging because thermal and mechanical properties are coupled in most fully dense and porous solids. Nanolattices can fill this void in the property space because of their hierarchical design and nanoscale features. We report that nanolattices composed of 24- to 182-nm-thick hollow alumina beams in the octet-truss architecture achieved thermal conductivities as low as 2 mW m^(–1) K^(–1) at room temperature while maintaining specific stiffnesses of 0.3 to 3 MPa kg^(–1) m^3 and the ability to recover from large deformations. These nanoarchitected materials possess the same ultralow thermal conductivities as aerogels while attaining specific elastic moduli that are nearly 2 orders of magnitude higher. Our work demonstrates a general route to realizing multifunctional materials that occupy previously unreachable regions within the material property space.

Additional Information

© 2018 American Chemical Society. Received: March 23, 2018; Revised: July 3, 2018; Published: July 19, 2018. This work was supported by the Air Force Office of Scientific Research (AFOSR) Multifunctional Materials program under grant no. FA9550-14-1-0266. J.R.G. acknowledges financial support from the Department of Defense (DoD) through the Vannevar Bush Faculty Fellowship, and C.M.P. acknowledges support from the Office of Naval Research (ONR) through grant no. N00014-16-1-2431. The authors thank Lucas R. Meza for useful discussions and fabrication assistance, the Kavli Nanoscience Institute at Caltech for providing clean room facilities and staff support, and Prof. Nathan S. Lewis for access to additional fabrication equipment. Author Contributions: N.G.D. built the 3ω experiment, conducted the thermal measurements, and developed the thermal model. R.A.J. fabricated samples and assisted with thermal measurements. C.M.P. performed the mechanical measurements. J.R.G. and A.J.M. provided technical guidance and supervision. All authors contributed to writing the paper. The authors declare no competing financial interest.

Attached Files

Supplemental Material - nl8b01191_si_001.pdf

Files

nl8b01191_si_001.pdf
Files (1.0 MB)
Name Size Download all
md5:e01d0edb4806c3638241902cac0bd705
1.0 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023