Tracking neural crest cell cycle progression in vivo
Abstract
Analysis of cell cycle entry/exit and progression can provide fundamental insights into stem cell propagation, maintenance, and differentiation. The neural crest is a unique stem cell population in vertebrate embryos that undergoes long‐distance collective migration and differentiation into a wide variety of derivatives. Using traditional techniques such as immunohistochemistry to track cell cycle changes in such a dynamic population is challenging, as static time points provide an incomplete spatiotemporal picture. In contrast, the fluorescent, ubiquitination‐based cell cycle indicator (Fucci) system provides in vivo readouts of cell cycle progression and has been previously adapted for use in zebrafish. The most commonly used Fucci systems are ubiquitously expressed, making tracking of a specific cell population challenging. Therefore, we generated a transgenic zebrafish line, Tg(‐4.9sox10:mAG‐gmnn(1/100)‐2A‐mCherry‐cdt1(1/190)), in which the Fucci system is specifically expressed in delaminating and migrating neural crest cells. Here, we demonstrate validation of this new tool and its use in live high‐resolution tracking of cell cycle progression in the neural crest and derivative populations.
Additional Information
© 2018 Wiley Periodicals, Inc. Issue Online: 08 August 2018; Version of Record online: 28 June 2018; Manuscript accepted: 26 April 2018; Manuscript revised: 23 April 2018; Manuscript received: 18 February 2018. Funding Information: NIH. Grant Numbers: R01‐DE024157. Chicago Biomedical Consortium with support from the Searle Funds at The Chicago Community Trust.Attached Files
Accepted Version - nihms964581.pdf
Supplemental Material - dvg23214-sup-0001-suppinfofs1.tif
Supplemental Material - dvg23214-sup-0002-suppinfofs2.tif
Supplemental Material - dvg23214-sup-0003-suppinfofs3.tif
Supplemental Material - dvg23214-sup-0004-suppinfomov1.mov
Supplemental Material - dvg23214-sup-0005-suppinfomov2.mov
Supplemental Material - dvg23214-sup-0006-suppinfo1.docx
Files
Name | Size | Download all |
---|---|---|
md5:ca59115bc06e6459554a7755cfd0aa68
|
16.2 MB | Preview Download |
md5:07be22fb30e003ca7d091a8d9bf270aa
|
5.1 MB | Preview Download |
md5:df7324486932167c95a10cc1213a75ac
|
6.5 MB | Preview Download |
md5:7859c03e16763f5c821362b7d6e847d0
|
4.6 MB | Download |
md5:f8d7a34c079836cba8913dcf3b6eec0f
|
2.5 MB | Download |
md5:24c104fc8291abc5448ba8f7d1f18a64
|
18.7 kB | Download |
md5:9c87a292ff5a7aa011ed6fd303de7ebf
|
2.2 MB | Preview Download |
Additional details
- PMCID
- PMC6143351
- Eprint ID
- 87551
- Resolver ID
- CaltechAUTHORS:20180705-123554923
- Searle Scholars Program
- NIH
- R01-DE024157
- Created
-
2018-07-05Created from EPrint's datestamp field
- Updated
-
2022-03-09Created from EPrint's last_modified field