Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 28, 2017 | public
Book Section - Chapter

Metasurfaces with controlled angular phase dispersion

Abstract

Metasurfaces are two-dimensional arrangements of nano-scatterers that enable control of phase, amplitude, and polarization of light with high efficiency and subwavelength resolution. They have enabled diffractive optical elements with enhanced functionalities and performance. Nevertheless, metasurface diffractive optical elements share many of the properties of regular diffractive optical elements. One of these properties is the response of diffractive elements to changing the angle of illumination: if the beam incident on a grating is rotated by an angle, all diffraction orders will rotate by corresponding angles in the same direction. More precisely, because of the constant grating momentum, the change in the sine of all diffraction angles will be equal to the change in the sine of the illumination angle. Many optical devices of interest, however, do not require this type of behavior, which makes their implementation using metasurfaces very challenging. For instance retroreflectors, which reflect light incident from any angle to the same direction, or collimators, that deflect light coming from any angle to a single given direction, do not follow the regular diffractive optics angular response. We investigate properties of single-layer metasurfaces that enable devices like retroreflectors and collimators. We show that such metasurfaces should have the ability to control the phase, as well as the derivative of phase with respect to angle. We demonstrate designs that provide such control, and use them to show devices that defy the regular response of diffractive optical devices to changes in the illumination angle.

Additional Information

© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE).

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024