Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2018 | public
Journal Article

Alterations of functional circuitry in aging brain and the impact of mutated APP expression

Abstract

Alzheimer's disease (AD) is a disease of aging that results in cognitive impairment, dementia and death. Pathognomonic features of AD are amyloid plaques composed of proteolytic fragments of the amyloid precursor protein (APP) and neurofibrillary tangles composed of hyperphosphorylated tau protein. One type of familial Alzheimer's disease (FAD) occurs when mutant forms of APP are inherited. Both APP and tau are components of the microtubule-based axonal transport system, which prompts the hypothesis that axonal transport is disrupted in AD, and that such disruption impacts cognitive function. Transgenic mice expressing mutated forms of APP provide preclinical experimental systems to study AD. Here we perform manganese-enhanced magnetic resonance imaging (MEMRI) to study transport from hippocampus to forebrain in four cohorts of living mice: young and old wild-type and transgenic mice expressing a mutant APP with both Swedish and Indiana mutations (APPSwInd). We find that transport is decreased in normal aging and further altered in aged APPSwInd plaque-bearing mice. These findings support the hypothesis that transport deficits are a component of AD pathology and thus may contribute to cognitive deficits.

Additional Information

© 2018 Published by Elsevier. Received 31 March 2017, Revised 17 June 2018, Accepted 18 June 2018, Available online 28 June 2018.

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023