Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 21, 2018 | Published + Supplemental Material + Submitted
Journal Article Open

High-fidelity control and entanglement of Rydberg atom qubits

Abstract

Individual neutral atoms excited to Rydberg states are a promising platform for quantum simulation and quantum information processing. However, experimental progress to date has been limited by short coherence times and relatively low gate fidelities associated with such Rydberg excitations. We report progress towards high-fidelity quantum control of Rydberg-atom qubits. Enabled by a reduction in laser phase noise, our approach yields a significant improvement in coherence properties of individual qubits. We further show that this high-fidelity control extends to the multi-particle case by preparing a two-atom entangled state with a fidelity exceeding 0.97(3), and extending its lifetime with a two-atom dynamical decoupling protocol. These advances open up new prospects for scalable quantum simulation and quantum computation with neutral atoms.

Additional Information

© 2018 American Physical Society. Received 12 June 2018; published 20 September 2018. We acknowledge A. Browaeys, M. Saffman, G. Biedermann, and their groups for many fruitful discussions during the Institute for Theoretical Atomic, Molecular, and Optical Physics (ITAMP) workshop, which stimulated this study. We also thank J. Ye and T. Lahaye for many useful discussions and suggestions. This work was supported by National Science Foundation (NSF), Center for Ultracold Atoms (CUA), Army Research Office (ARO), Air Force Office of Scientific Research Multidisciplinary Research Program of the University Research Initiative (AFOSR MURI), and the Vannevar Bush Faculty Fellowship. H.L. acknowledges support from the National Defense Science and Engineering Graduate (NDSEG) fellowship. A. O. acknowledges support by a research fellowship from the German Research Foundation (DFG). S. S. acknowledges funding from the European Union under the Marie Skłodowska Curie Individual Fellowship Programme H2020-MSCA-IF-2014 (Project No. 658253).

Attached Files

Published - PhysRevLett.121.123603.pdf

Submitted - 1806.04682.pdf

Supplemental Material - coherence_si.pdf

Files

1806.04682.pdf
Files (1.6 MB)
Name Size Download all
md5:e99628caa8e1b76f8f72649dbf9f98cc
678.1 kB Preview Download
md5:876a31088cfdaac10b40a530b883fc64
741.2 kB Preview Download
md5:fdace1af483c9b4cdfd4297a4918e7b4
211.2 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023